1. Mole: the amount of any substance that contains 6.02×10^{23} particles

NOTE: concentration in g/dm3 = mass of that many number of moles/dm3 Eg. Calculate the concentration of 0.0400 mol/dm3 NaOH in g/dm3

 $0.04 \times 40 = 1.6 \text{g/dm}3$

2.

The Haber process is a reversible reaction.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

The reaction has a 30% yield of ammonia.

Which volume of ammonia gas, NH_3 , measured at room temperature and pressure, is obtained by reacting 0.75 moles of hydrogen with excess nitrogen?

A 3600 cm^3 **B** 5400 cm^3 **C** 12000 cm^3 **D** 18000 cm^3

Answer: A

NOTE: In calculations, explicitly show that Mr = (calculated value). Do not directly add up relative atomic masses.

3. Fluorine reacts with sulphur to form a compound which has 25.2% sulphur by mass and a relative molecular mass of 254. Determine the molecular formula of this compound.

Method 1 M1 S 25.2/32 or 0.78/0.79 ... and F 74.8/19 or 3.93/3.94...

M2 ÷ both by 0.7875 = 1 : 5 or SF₅

M3 (254 \div 127 = 2 and) S₂F₁₀

Method 2

M1 254 \times 25.2/100 and 254 \times 74.8 / 100 $\,$ OR '64' and '190'

M2 64/32 and 190/19

M3 (2 and 10) to give S₂F₁₀

4. Naturally occurring atoms of silver are ¹⁰⁷Ag and ¹⁰⁹Ag. A sample of silver has a relative atomic mass of 108.0. Deduce the percentage of ¹⁰⁷Ag present in this sample. 50%

5.

Complete the equation for the decomposition of hydrated iron(II) sulfate.

$$\dots FeSO_4 \bullet 7H_2O \rightarrow Fe_2O_3 + SO_2 + SO_3 + \dots H_2O$$

Answer:

2FeSO4 * 7H2O; 14H2O

6.

Complete the equation for the decomposition of hydrated zinc nitrate.

$$2Zn(NO_3)_2 \cdot 6H_2O \rightarrow \dots ZnO + \dots NO_2 + O_2 + \dots H_2O$$

Answer:

2ZnO; 4NO2; 12H2O