Mathematics Paper 4

Vectors

- (a) Draw the image of triangle T after a reflection in the line y = -1. [2]
- (b) Draw the image of triangle T after a rotation through 90° clockwise about (0, 0). [2]
- (c) Describe fully the **single** transformation that maps triangle T onto triangle A.

2.

(d)

In the diagram, O is the origin, OT = 2TD and M is the midpoint of TC. $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OD} = \mathbf{d}$.

Find the position vector of M. Give your answer in terms of \mathbf{c} and \mathbf{d} in its simplest form.

.....[3]

- (a) (i) Draw the image of triangle A after a reflection in the line y = -x. [2]
 - (ii) Draw the image of triangle A after a translation by the vector $\begin{pmatrix} -2 \\ -9 \end{pmatrix}$. [2]
- (b) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B,
 -[3]
 - (ii) triangle A onto triangle C.

- (a) Draw the image of shape A after a translation by the vector $\begin{pmatrix} 8 \\ -6 \end{pmatrix}$. [2]
- (b) Draw the image of shape A after a reflection in the line y = -1. [2]
- (c) Describe fully the **single** transformation that maps shape A onto shape B.

La contraction of the contractio

(d) Describe fully the **single** transformation that maps shape A onto shape C.

(a) Describe fully the **single** transformation that maps triangle T onto triangle P.

- (b) (i) Reflect triangle T in the line x = 1. [2]
 - (ii) Rotate triangle T through 90° anticlockwise about (6, 0). [2]
 - (iii) Enlarge triangle T by a scale factor of -2, centre (1, 0). [2]

- (a) On the grid, draw the image of
 - (i) triangle A after a rotation of 90° anticlockwise about (0, 0),
 - (ii) triangle A after a translation by the vector $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$. [2]
- (b) Describe fully the single transformation that maps triangle A onto triangle B.

[2]

8 (a)
$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}$$
 $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ $\overrightarrow{DC} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

Find

(i) \overrightarrow{AC} ,

$$\overrightarrow{AC} = \begin{pmatrix} & \\ & \\ & \\ \end{bmatrix} \quad [2]$$
 (ii) \overrightarrow{BD} ,

(b)

In the diagram, OAB and OED are straight lines. O is the origin, A is the midpoint of OB and E is the midpoint of AC. $\overrightarrow{AC} = \mathbf{a}$ and $\overrightarrow{CB} = \mathbf{b}$.

Find, in terms of a and b, in its simplest form

(i) \overrightarrow{AB} ,

$$\overrightarrow{AB} = \dots$$
 [1]

(ii) \overrightarrow{OE} ,

$$\overrightarrow{OE} = \dots$$
 [2]

(iii) the position vector of D.

.....[3]

- (a) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B,

[2]
 [4]

(ii) triangle A onto triangle C.

	[3]

(b) On the grid, draw the image of

(i) triangle A after an enlargement, scale factor
$$-\frac{1}{2}$$
, centre (3, 0), [2]

(ii) triangle A after a translation by the vector
$$\begin{pmatrix} -3\\1 \end{pmatrix}$$
, [2]

(iii) triangle A after the transformation that is represented by the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(a) (i) Translate shape T by the vector $\begin{pmatrix} -1 \\ 6 \end{pmatrix}$.

Label the image A. [2]

- (ii) Rotate shape T about the point (5, 3) through 180° . Label the image B. [2]
- (iii) Describe fully the **single** transformation that maps shape A onto shape B.

- (b) (i) Reflect shape T in the line y = x. [2]
 - (ii) Find the matrix that represents the transformation in part (b)(i).

[2]

(a) On the grid, draw the image of

(i) triangle A after a translation by the vector
$$\begin{pmatrix} -3\\2 \end{pmatrix}$$
, [2]

(ii) triangle A after a reflection in the line
$$y = x$$
. [2]

(b) Describe fully the **single** transformation that maps triangle A onto triangle B.

[3]

(c) (i) Find the matrix that represents an enlargement, scale factor -2, centre (0,0).

(ii) Calculate the determinant of the matrix in part (c)(i).

F 4 7	
 [1]	

A line jo	pins $A(1, 3)$ to $B(5, 8)$.			
(a) (i)	Find the midpoint of AB.			
			()	[2]
(ii)	Find the equation of the line <i>AB</i> .			
	Give your answer in the form $y = mx + c$.			
		у	=	[3]
(b) Th	e line AB is transformed to the line PQ .			
Fin	and the co-ordinates of P and the co-ordinates of Q after A	1 <i>B</i> is	transformed by	
(i)	a translation by the vector $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$,			
	(-/			
		D	()	
			()	[2]
(ii)	a rotation through 90° anticlockwise about the origin,	Q	([4]
(II)	a rotation through 50° anticlockwise about the origin,			
		P	()	
			()	[2]
		Z	(L~]

	(iii)	a reflection in the line $x = 2$,		
			P	()
			Q	() [2]
	(iv)	a transformation by the matrix $\begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$.		
			P	()
			Q	() [2]
(c)		scribe fully the single transformation that maps the line as the point $(-2, -6)$ and Q is the point $(-10, -16)$.	AB o	onto the line PQ where
			•••••	
	••••		•••••	[3]

(b)

(i) Write \overrightarrow{OA} as a column vector.

$$\overrightarrow{OA} = \left(\right)$$
 [1]

(ii) Write \overrightarrow{AB} as a column vector.

$$\overrightarrow{AB} = \left(\right)$$
 [1]

(iii) A and B lie on a circle, centre O.

Calculate the length of the arc AB.

.....[6]

(a) Describe fully the **single** transformation that maps shape A onto shape B.

Γ

- (b) On the grid, draw the image of
 - (i) shape A after a translation by the vector $\begin{pmatrix} -3\\4 \end{pmatrix}$, [2]
 - (ii) shape A after a rotation through 180° about (0, 0), [2]
 - (iii) shape A after an enlargement, scale factor 2, centre (-7, 0). [2]

P is the	triangle and ABC and PQC are straight lines. midpoint of OA , Q is the midpoint of PC and $\overrightarrow{OB} = 8\mathbf{b}$.	OQ:QB=3:1.
(a) Fin	d, in terms of a and/or b, in its simplest form	
(i)	\overrightarrow{AB} ,	
		$\overrightarrow{AB} = \dots $ [1]
(ii)	\overrightarrow{OQ} ,	
		$\overrightarrow{OQ} = \dots$ [1]
(iii)	\overrightarrow{PQ} .	

 $\overrightarrow{PQ} = \dots$ [1]

(b) By using vectors, find the ratio AB : BC.

.....[3]

9	(a)	Find the magnitude of the vector $\begin{pmatrix} -1\\7 \end{pmatrix}$.	
	(b)	The determinant of the matrix $\begin{pmatrix} 6 & 2m \\ 5 & m \end{pmatrix}$ is 24. Find the value of m .	[2]
	(c)	$\mathbf{L} = \begin{pmatrix} 2 & 5 \\ 3 & 9 \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} -4 \\ 2 \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} 1 & 7 \end{pmatrix}$ Work out the following. (i) NM	$m = \dots [2]$
		(ii) LM	[2]
	((iii) L^2	[2]
		(iv) \mathbf{L}^{-1}	[2]
			[2]

- (a) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B,

F/	٠
I'	1

(ii) triangle A onto triangle C,

[3]

(iii) triangle A onto triangle D.

	[3]

(b) On the grid, draw the image of triangle A after an enlargement by scale factor 2, centre (7,3). [2]

11 (a)
$$\overrightarrow{OA} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 $\overrightarrow{AB} = \begin{pmatrix} 8 \\ -7 \end{pmatrix}$ $\overrightarrow{AC} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$

Find

(i)
$$|\overrightarrow{OB}|$$
,

$$|\overrightarrow{OB}| = \dots [3]$$

(ii) \overrightarrow{BC} .

$$\overrightarrow{BC} = \left(\begin{array}{c} \end{array} \right)$$
 [2]

(b)

 \overrightarrow{PQRS} is a parallelogram with diagonals PR and SQ intersecting at X. $\overrightarrow{PQ} = \mathbf{a}$ and $\overrightarrow{PS} = \mathbf{b}$.

Find \overrightarrow{QX} in terms of **a** and **b**. Give your answer in its simplest form.

$$\overrightarrow{QX} = \dots$$
 [2]

$$\mathbf{M} = \begin{pmatrix} 2 & 5 \\ 1 & 8 \end{pmatrix}$$

Calculate

- (i) **M**²,
- $\mathbf{M}^2 = \begin{pmatrix} & & \\ & & \end{pmatrix} \qquad [2]$ (ii) \mathbf{M}^{-1} .

$$\mathbf{M}^{-1} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$
 [2]

- Draw the image of triangle A after a reflection in the line x = 2. [2]
 - Draw the image of triangle A after a translation by the vector $\begin{pmatrix} -2\\4 \end{pmatrix}$. [2]
 - Draw the image of triangle A after an enlargement by scale factor $-\frac{1}{2}$, centre (3, 1). [3]
- (b) Describe fully the single transformation that maps triangle A onto triangle B.

(c) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.

- 8 (a) $\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} 1 & 2 \end{pmatrix} \qquad \mathbf{P} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$
 - (i) For the following calculations, put a tick (✓) if it is possible or put a cross (x) if it is not possible. There is no need to carry out any of the calculations.

Calculation	✓ or ×
N + P	
NP	
\mathbf{M}^2	
N^2	
MN	
NM	

		[4]
(ii)	Work out $\binom{1}{2} + \mathbf{P}$.	

(iii) Work out PN.

(iv) Work out \mathbf{M}^{-1} .

(b) Describe fully the **single** transformation represented by the matrix
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

(a)	Describe	fully the	single	transformation	that	mans

(i)	flag A onto flag B ,	
		[2]
(ii)	flag A onto flag C ,	
		[3]
(iii)	flag A onto flag D .	

(b) Draw the reflection of flag A in the line y = -1. [2]

(a) Describe fully the single transformation that maps triangle A onto triangle B.

- (b) On the grid, draw the image of
 - (i) triangle A after a reflection in the x-axis, [1]
 - (ii) triangle A after a translation by the vector $\begin{pmatrix} 7 \\ -5 \end{pmatrix}$, [2]
 - (iii) triangle A after the transformation represented by the matrix $\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$. [3]

- 11 (a) $\mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ $\mathbf{b} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} 14 \\ 9 \end{pmatrix}$
 - (i) Find 3a 2b.

(iii)

 $m\mathbf{a} + n\mathbf{b} = \mathbf{c}$

- (ii) Find | a |.
-[2]
 - Write down two simultaneous equations and solve them to find the value of m and the value of n. Show all your working.

<i>m</i> =	
n =	[5]

(b)

OAB is a triangle and C is the mid-point of OB. D is on AB such that AD : DB = 3 : 5.

OAE is a straight line such that OA: AE = 2:3.

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$.

- (i) Find, in terms of a and c, in its simplest form,
 - (a) \overrightarrow{AB} ,

$$\overrightarrow{AB} = \dots [1]$$

NOT TO SCALE

(b) \overrightarrow{AD} ,

$$\overrightarrow{AD} = \dots [1]$$

(c) \overrightarrow{CE} ,

$$\overrightarrow{CE} = \dots [1]$$

(d) \overrightarrow{CD} .

$$\overrightarrow{CD} = \dots [2]$$

(ii) $\overrightarrow{CE} = k\overrightarrow{CD}$

Find the value of k.

$$k = \dots [1]$$

1 (a)

(i) Describe fully the **single** transformation that maps triangle T onto triangle P.

.....

- (ii) Translate triangle T by the vector $\begin{pmatrix} -2 \\ -5 \end{pmatrix}$. [2]
- (iii) Rotate triangle T through 90° anticlockwise about (0, 0). [2]
- (iv) Enlarge triangle T by scale factor $-\frac{1}{2}$ with centre (0, 0). [2]

(b)

(i) Find the column vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\right)$$
 [1]

(ii) Find $|\overrightarrow{AB}|$.

$$\left|\overrightarrow{AB}\right| = \dots$$
 [2]

(iii) B is the mid-point of the line AC.

Find the co-ordinates of *C*.

$$(\\ ,\\ ,\\)\ [2]$$

(iv) Find the equation of the straight line that passes through A and B.

.....[3]

(v) The straight line that passes through A and B cuts the y-axis at D.

Write down the co-ordinates of D.

(.....)[1]

- (a) Describe fully the single transformation that maps
 - (i) shape P onto shape Q,

[3

(ii) shape P onto shape R,

[2]

(iii) shape P onto shape S.

- (b) (i) Draw the reflection of shape S in the line y = x. [2]
 - (ii) Write down the matrix that represents the transformation in part (b)(i).

- (a) (i) Draw the image of triangle A after reflection in the line x = 4. [2]
 - (ii) Draw the image of triangle A after rotation of 90° anticlockwise about (0, 0). [2]
 - (iii) Draw the image of triangle A after translation by the vector $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$. [2]
- (b) Describe fully the **single** transformation that maps triangle A onto triangle B.

(c) Find the matrix that represents the transformation in part (a)(ii).

[2]

(d)	Point P	has	co-ordinates	(4,	1).
(/				(,		,-

(ii) Find GF(P).

$$\mathbf{F} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{G} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ represent transformations.

(i) Find G(P), the image of P after the transformation represented by G.

() [2]	
()[3]	

(iii) Find the matrix Q such that GQ(P) = P.

2 (a)

On the grid, draw the image of

- (i) triangle T after translation by the vector $\begin{pmatrix} 6 \\ -5 \end{pmatrix}$, [2]
- (ii) triangle T after rotation through 90° anticlockwise with centre (4, 10), [2]
- (iii) triangle T after enlargement with scale factor $\frac{1}{2}$, centre (10, 0). [2]
- **(b)** Describe fully the **single** transformation that is represented by the matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.

- (c) $\mathbf{M} = \begin{pmatrix} 2 & 3 \\ 2 & 4 \end{pmatrix}$ $\mathbf{N} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\mathbf{P} = \begin{pmatrix} 1 & 5 \end{pmatrix}$
 - (i) Find
 - (a) MN,

$$\mathbf{MN} = [2]$$

(b) **NP**,

$$\mathbf{NP} = [2]$$

(c) M^{-1} .

$$\mathbf{M}^{-1} = \left(\begin{array}{c} \\ \end{array} \right)$$
 [2]

(ii) Write down a product of two of the matrices M, N and P which it is not possible to work out.

.....[1]

(a) Describe fully the single transformation that maps shape A onto

((i)	shape	R

 2

(ii) shape C.

••••••
 [3]

- (b) Draw the image of shape A after rotation through 90° anticlockwise about the point (3, -1). [2]
- (c) Draw the image of shape A after reflection in y = 1. [2]
- (d) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.

 • • • • •
F2

11 (a)
$$A = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}$$

Find

- (i) A^2 ,
- $\left(\begin{array}{cc} & & \\ & & \end{array}\right) \qquad [2]$
- (ii) A^{-1} , the inverse of A.

- **(b)** Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.
 -[2]
- (c) Find the matrix that represents a clockwise rotation of 90° about the origin.

(d)

In the diagram, O is the origin and P lies on AB such that AP : PB = 3 : 4. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(i) Find \overrightarrow{OP} , in terms of a and b, in its simplest form.

\overrightarrow{OP}	_	 L3.
UΡ	_	 [J

(ii) The line OP is extended to C such that $\overrightarrow{OC} = m\overrightarrow{OP}$ and $\overrightarrow{BC} = k\mathbf{a}$. Find the value of m and the value of k.

$$m = \dots$$

$$k = \dots [2]$$

4 (a)

Draw the image of

(i) flag
$$F$$
 after translation by the vector $\begin{pmatrix} 6 \\ -2 \end{pmatrix}$, [2]

(ii) flag
$$F$$
 after rotation through 180° about $(-2, 0)$, [2]

(iii) flag
$$F$$
 after reflection in the line $y = x$. [2]

(b)

(i) Describe fully the **single** transformation that maps triangle P onto triangle Q.

 [3]

(ii) Find the matrix that represents this transformation.

(c) The point A is translated to the point B by the vector $\begin{pmatrix} 4u \\ 3u \end{pmatrix}$.

$$|\overrightarrow{AB}| = 12.5$$

Find *u*.

$$u =$$
.....[3]

(a) Draw the image of

(i)	triangle A after a reflection in the line $x = 0$.	[2]

- (ii) triangle A after an enlargement, scale factor 2, centre (0, 4), [2]
- (iii) triangle A after a translation by the vector $\begin{pmatrix} -5\\3 \end{pmatrix}$. [2]
- **(b)** Describe fully the **single** transformation that maps triangle A onto triangle B.

(c)		$\mathbf{T} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ \mathbf{U}	$\mathbf{r} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	
	Poir	nt P has co-ordinates $(1, -4)$.	,	,	
	(i)	Find $\mathbf{T}(P)$.			
	(ii)	Find $TU(P)$.			() [2]
					() [2]
	(iii)	Describe the single transformation rep	resente	ed by the matrix	Т.
				•••••	

.....[3]

- (a) Describe fully the **single** transformation that maps
 - (i) triangle X onto triangle Y,

	[3]

(ii) triangle X onto triangle Z.

••••
[3]

- **(b) (i)** Draw the image of triangle X after a translation by the vector $\binom{-5}{3}$.

 Label this triangle P. [2]
 - (ii) Draw the reflection of triangle P in the line y = 3. [2]
- (c) Draw the image of triangle *X* after the transformation represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. [3]

NOT TO SCALE

O is the origin and OPQRST is a regular hexagon.

$$\overrightarrow{OP} = \mathbf{x}$$
 and $\overrightarrow{OT} = \mathbf{y}$.

- (a) Write down, in terms of x and/or y, in its simplest form,
 - (i) \overrightarrow{QR} ,

$$\overrightarrow{QR} = \dots$$
 [1]

(ii) \overrightarrow{PQ} ,

$$\overrightarrow{PQ} = \dots$$
 [1]

(iii) the position vector of S.

|--|

(b) The line SR is extended to G so that SR : RG = 2 : 1.

Find \overrightarrow{GQ} , in terms of x and y, in its simplest form.

$$\overrightarrow{GQ} = \dots$$
 [2]

- (c) M is the midpoint of OP.
 - (i) Find \overrightarrow{MG} , in terms of x and y, in its simplest form.

$$\overrightarrow{MG} = \dots$$
 [2]

(ii) H is a point on TQ such that TH: HQ = 3:1.

Use vectors to show that *H* lies on *MG*.

2 (a)

- (i) Draw the image of triangle T after a translation by the vector $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$. [2]
- (ii) Draw the image of triangle T after a reflection in the line y = 1. [2]
- (iii) Describe fully the **single** transformation that maps triangle T onto triangle Q.

(b)		$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} 4 & 3 \\ 1 & k \end{pmatrix} \qquad \mathbf{P} = \begin{pmatrix} 1 & 3 \\ 0 & 6 \end{pmatrix}$ Work out $\mathbf{M} + \mathbf{P}$.		
) [1]
	(ii)	Work out PM.) [2]
	(iii)	$ \mathbf{M} = \mathbf{N} $		
		Find the value of k .		
		k =		[3]
(c)	(i)	Describe fully the single transformation represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	1).	
				[2]

(ii) Find the matrix which represents a reflection in the line y = x.

OPQR is a rectangle and *O* is the origin. *M* is the midpoint of *RQ* and *PT*: TQ = 2 : 1. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$.

- (a) Find, in terms of p and/or r, in its simplest form
 - (i) \overrightarrow{MQ} ,

$$\overrightarrow{MQ} = \dots [1]$$

(ii) \overrightarrow{MT} ,

$$\overrightarrow{MT} = \dots [1]$$

(iii) \overrightarrow{OT} .

$$\overrightarrow{OT} = \dots [1]$$

(b) RQ and OT are extended to meet at U.

Find the position vector of U in terms of ${\bf p}$ and ${\bf r}$. Give your answer in its simplest form.

(c) $\overrightarrow{MT} = \begin{pmatrix} 2k \\ -k \end{pmatrix}$ and $|\overrightarrow{MT}| = \sqrt{180}$.

Find the positive value of k.

 $k = \dots [3]$

3 (a)

On the grid, draw the image of

(i) shape A after a reflection in the line
$$x = 1$$
, [2]

(ii) shape
$$A$$
 after an enlargement with scale factor -2 , centre $(0, 1)$, [2]

(iii) shape A after the transformation represented by the matrix
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. [3]

(b)	Describe fully the single transformation represented by the matrix	$\binom{3}{0}$	$\binom{0}{3}$.
		١U	3/

 	 	•••••
		[3]

(ii)

(a)	(i)	Draw the image of triangle T after a reflection in the line $x = 0$.	[2]
	(ii)	Draw the image of triangle T after a rotation through 90° clockwise about $(-2, -1)$.	[2]
	(iii)	Describe fully the \mathbf{single} transformation that maps triangle T onto triangle U .	
			[2]
	(iv)	Describe fully the single transformation that maps triangle T onto triangle V .	
			[3]
(b)	(i)	Find the matrix that represents the transformation in part (a)(i).	

Describe fully the single transformation represented by the inverse of the matrix in part (b)(i).

- $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ -1 & 5 \\ 3 & -4 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 3 \\ -1 & 5 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 7 \\ -4 \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 2 & 5 \end{pmatrix}$
 - (a) Work out each of the following if the answer is possible.

 If a calculation is not possible, write "not possible" in the answer space.
 - (i) BA

[1] (ii) 2A

- [1]
- (iii) CD
- (iv) DC
- [2](v) \mathbf{B}^2
- [2]
- (b) Find B^{-1} , the inverse of **B**.

(a) $\mathbf{v} = \begin{pmatrix} -4 \\ -8 \end{pmatrix}$

(i) Draw the image of triangle A after the translation by vector \mathbf{v} . [2]

(ii) Calculate |v|.

b)	(i)	Describe fully the single transformation that maps triangle A	onto triangle <i>B</i> .		
					[3]
	(ii)	Find the matrix that represents the transformation that maps	triangle A onto tria	ngle B.	
					[2]
	(iii)	Calculate the determinant of the matrix in part (b)(ii).	\	J	
				•••••	[1]

- (a) Draw the image when triangle A is reflected in the line x = 1. [2]
- **(b)** Draw the image when triangle A is translated by the vector $\begin{pmatrix} -2\\3 \end{pmatrix}$. [2]
- (c) Draw the image when triangle A is enlarged by scale factor 2 with centre (4, 5). [2]
- (d) Describe fully the **single** transformation that maps triangle A onto triangle B.

[3

- 9 (a) $\mathbf{m} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $\mathbf{n} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$
 - (i) Work out 2m 3n.

(ii) Calculate |2m-3n|.

LO1
 4

(b) (i)

NOT TO SCALE

In the diagram, O is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point M lies on AB such that AM : MB = 3 : 2.

Find, in terms of a and b, in its simplest form

(a) \overrightarrow{AB} ,

(b) \overrightarrow{AM} ,

$$\overrightarrow{AM} = \dots [1]$$

(ii)	<i>OM</i> is extended to the point <i>C</i> . The position vector of <i>C</i> is $\mathbf{a} + k\mathbf{b}$.			[2]
	Find the value of k .			
		k :	=	[1]

(c) the position vector of M.

4(a)	Triangle at (-4, -4) (-1, -3) (-4, -3)	2	B1 for correct points not joined or for reflection in any $y = k$ or for reflection in $x = -1$
4(b)	Triangle at (1, 1) (1, 4) (2, 4)	2	B1 for correct points not joined or rotation 90 clockwise around any point or rotation 90 anticlockwise around (0, 0)
4(c)	Translation $\begin{pmatrix} 5 \\ -6 \end{pmatrix}$	2	B1 for translation or correct vector oe
2(d)	$\frac{1}{2}\mathbf{c} + \frac{1}{3}\mathbf{d}$	3	B2 for correct unsimplified answer
			or M1 for $\overline{CT} = -\mathbf{c} + \frac{2}{3}\mathbf{d}$ oe
			or $\overrightarrow{TC} = \mathbf{c} - \frac{2}{3}\mathbf{d}$ oe
			or for correct route
2(a)(i)	triangle with vertices at (-2, -1) (-8, -1) (-2, -5)	2	B1 for correct reflection in $y = x$
2(a)(ii)	triangle with vertices at $(-1, -1)(-1, -7)(3, -7)$	2	B1 for translation by $\begin{pmatrix} k \\ -9 \end{pmatrix}$ or $\begin{pmatrix} -2 \\ k \end{pmatrix}$
2(b)(i)	Enlargement [centre] (-7, 8) [sf] ½	3	B1 for each
2(b)(ii)	Rotation [centre] (0, 0) 90° clockwise oe	3	B1 for each
1(a)	Image at (4, -1) (4, -4) (5, -4)	:	B1 for translation by $\begin{pmatrix} 8 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -6 \end{pmatrix}$ or for correct vertices not joined
1(b)	Image at (-4, -4) (-4, -7) (-3, -4)		B1 for reflection in $x = -1$ or $y = k$ or for correct vertices not joined
1(c)	Enlargement 3 (-5, 5)		B1 for each
1(d)	Rotation 90° clockwise oe (1, 1)	:	3 B1 for each

2(a)	Translation $\begin{pmatrix} 1 \\ -6 \end{pmatrix}$	2	В	1 for each
2(b)(i)	Image at (0, 1), (-3, 1), (-3, 2)	2	В	1 for reflection in $x = k$ or $y = 1$
2(b)(ii)	Image at $(5, -4)$, $(5, -1)$, $(4, -1)$	2	2 B1 for rotation 90° anticlockwise with other centre or for rotation 90° clockwise about (6, 0)	
2(b)(iii)	Image at $(-1, -2)$, $(-7, -2)$, $(-7, -4)$	I I		1 for enlargement, factor –2 with other entre
2(a)(i)	Triangle at (-3, 2) (-3, 3) (-5, 2)		2	B1 for correct rotation about incorrect point or for rotation 90 clockwise around (0, 0)
2(a)(ii)	Triangle at $(5, -2)$ $(6, -2)$ $(5, 0)$		2	B1 for translation by $\begin{pmatrix} 3 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -5 \end{pmatrix}$
2(b)	Enlargement [SF] 3 [Centre] (1, 4)		3	B1 for each
8(a)(i)	(4) (4)		2	B1 for $\begin{pmatrix} 4 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 4 \end{pmatrix}$
8(a)(ii)	$\begin{pmatrix} -4 \\ 8 \end{pmatrix}$		2	B1 for $\begin{pmatrix} -4 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 8 \end{pmatrix}$
8(a)(iii)	5.39 or 5.385		2	M1 for $(-2)^2 + 5^2$ oe
8(b)(i)	a + b		1	
8(b)(ii)	$\frac{3}{2}\mathbf{a} + \mathbf{b}$		2	M1 for a correct route, e.g. $\overrightarrow{OA} + \overrightarrow{AE}$
8(b)(iii)	$2\mathbf{a} + \frac{4}{3}\mathbf{b}$		3	M2 for unsimplified \overrightarrow{OD} or for $\frac{4}{3}$ b
				or M1 for \overrightarrow{OD} attempted in terms of a and b or for $\overrightarrow{CD} = \frac{1}{3}\mathbf{b}$ or $\overrightarrow{DB} = \frac{2}{3}\mathbf{b}$ seen

2(a)(i)	Reflection	2	B1 for each
	x = 1.5		
2(a)(ii)	Rotation	3	B1 for each
	(0,-1)		
	90° [anticlockwise] oe		
2(b)(i)	Image at $(5, -1)$ $(6, -1)$ $(6, -3)$	2	B1 for correct size and orientation but wrong position
			If 0 scored, SC1 for enlargement SF $\frac{1}{2}$
			with centre (3, 0)
2(b)(ii)	Image at (-6, 3) (-4, 3) (-6, 7)	2	B1 for translation $\begin{pmatrix} -3 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 1 \end{pmatrix}$
2(b)(iii)	Image at $(2, -1)(2, -3)(6, -3)$	3	M2 for 3 correct coordinates soi or M1 for $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & -3 & -3 \\ 2 & 2 & 6 \end{pmatrix}$ or B1 for stating reflection in $y = x$
1(a)(i)	Image at (1, 7), (4, 7), (4, 9), (3, 9)	2	B1 for translation by $\begin{pmatrix} -1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 6 \end{pmatrix}$
1(a)(ii)	Image at (5, 3), (6, 3), (8, 5), (5, 5)	2	B1 for 180° rotation with wrong centre
1(a)(iii)	Rotation 180° (4.5, 6) OR	3	B1 for rotation B1 for 180° B1FT for centre from their (a)(i)
	Enlargement, [factor] – 1 (4.5, 6)		B1 for enlargement B1 for -1 B1FT for centre from their (a)(i)
1(b)(i)	Image at (1, 2), (1, 5), (3, 5), (3, 4)	2	B1 for $y = x$ drawn or for 3 correct points
1(b)(ii)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	2	B1 for one correct row or one column within a 2 by 2 matrix

3(a)(i)	Image at (-5, 4), (-2, 4), (-4, 6)	2	B1 for translation by $\binom{-3}{k}$ or $\binom{k}{2}$
3(a)(ii)	Image at (2, 1), (4, -1), (2, -2)	2	B1 for reflection in $y = -x$ or $y = x$ drawn
3(b)	Rotation	3	B1 for each
	90°[anticlockwise] oe		
	(1, -1)		
3(c)(i)	$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$	2	B1 for 2 by 2 matrix with one correct row or column
3(c)(ii)	Strict FT their (c)(i)	1	Answer not equal to zero FT their (c)(i) only if 2 by 2
3(a)(i)	(3, 5.5)	2	B1 for either value correct
3(a)(ii)	$\frac{5}{4}x + \frac{7}{4}$ final answer	3	B2 for answer $\frac{5}{4}x + c$ oe or for correct
			equation in different form or M1 for $\frac{8-3}{5-1}$ oe
			and M1 for correct substitution shown of (1, 3) or (5, 8) or <i>their</i> (a)(i) into $y = (their \ m)x + c$ oe
3(b)(i)	(6, 1) (10, 6)	2	B1 for 2 or 3 values correct
3(b)(ii)	(-3, 1) (-8, 5)	2	B1 for 2 or 3 values correct If 0 scored, SC1 for (3, -1) and (8, -5)
3(b)(iii)	(3, 3) (-1, 8)	2	B1 for 2 or 3 values correct but not for (1, 3) and (5, 8)
3(b)(iv)	(5, -3)	2	B1 for either
	(11, -8)		or M1 for $\begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ or $\begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 5 \\ 8 \end{pmatrix}$
3(c)	Enlargement	3	B1 for each
	-2 Origin oe		
8(b)(i)	$\begin{pmatrix} 0 \\ 5 \end{pmatrix}$	1	
8(b)(ii)	$\begin{pmatrix} -3 \\ -1 \end{pmatrix}$	1	

8(b)(iii)	3.22 or 3.216 to 3.220			for [angle $AOB =]$ 36.8 or 36.9 or 36.84 to .87 M2 for $tan[AOB] = \frac{3}{4}$ oe for $[AOB =]2 \times sin^{-1}$ $\sqrt{(5-4)^2 + (0-3)^2}$ oe for $cos[AOB =]$ $\sqrt{(5-4)^2 + (0-3)^2}$ oe $2 \times 5 \times 5$ M1 for recognition of right-angle with rependicular from B to OA or x -axis for $[AB^2 =](5-4)^2 + (0-3)^2$ or better oe $(their\ AB)^2 = 5^2 + 5^2 - 2 \times 5 \times 5 \times cosOAB$ 2 for $\frac{their\ angle\ AOB}{360} \times 2 \times \pi \times 5$ oe M1 for radius = 5 soi
7(a)	Reflection $y = -1$		2	B1 for each
7(b)(i)	Image at (-6, 5) (-6, 7) (-5, 7) (-4, 5)		2	B1 for translation by $\binom{-3}{k}$ or $\binom{k}{4}$
7(b)(ii)	Image at $(1,-1)(3,-1)(3,-3)(2,-3)$		2	B1 for shape correct size and orientation but wrong position
7(b)(iii)	Image at (1, 2) (1, 6) (3, 6) (5, 2)		2	B1 for shape correct size and orientation, wrong position
11(a)(i)	8 b – 4 a oe		1	
11(a)(ii)	6 b		1	
11(a)(iii)	6b - 2a or 2(3b - a)		1	FT –2 a + <i>their</i> (a)(ii)
11(b)	2:1 oe final answer		3	Dep on correct \overrightarrow{BC} or correct \overrightarrow{AC} seen B2 for $\overrightarrow{BC} = 4\mathbf{b} - 2\mathbf{a}$ or M1 for a correct route for \overrightarrow{BC} in terms of \mathbf{a} and \mathbf{b} or for a correct route for \overrightarrow{AC} in terms of \mathbf{a} and \mathbf{b} If no/incorrect working seen then SC1 for final answer of $2:1$ (oe)

9(a)	7.07 or 7.071	2	M1 for $(-1)^2 + 7^2$ oe
9(b)	-6	2	M1 for $6 \times m - 5 \times 2m$ [= 24]
9(c)(i)	(10) final answer	2	B1 for answer 10 without brackets
9(c)(ii)	$\begin{pmatrix} 2 \\ 6 \end{pmatrix}$ final answer	2	M1 for $\binom{2}{k}$ or $\binom{k}{6}$
9(c)(iii)	$\begin{pmatrix} 19 & 55 \\ 33 & 96 \end{pmatrix} $ final answer	2	M1 for 2 or 3 correct elements
9(c)(iv)	$\frac{1}{3} \begin{pmatrix} 9 & -5 \\ -3 & 2 \end{pmatrix} \text{ oe isw}$	2	B1 for $k \begin{pmatrix} 9 & -5 \\ -3 & 2 \end{pmatrix}$ soi or det = 3 soi

4(a)(i)	Translation	2	B1 for each
	$\begin{pmatrix} -8 \\ 2 \end{pmatrix}$ oe		
4(a)(ii)	Enlargement	3	B1 for each
	$[sf =] \frac{1}{2} \text{ oe}$ (-4, 0)		
	(-4,0)		
4(a)(iii)	Rotation	3	B1 for each
	90° clockwise oe		
	(1,-1)		
4(b)	Triangle with $(1, -1)$, $(5, -1)$, $(1,7)$	2	B1 for correct size and orientation in wrong position or for 3 correct points not joined

11(a)(i)	12.6 or 12.64 to 12.65	3	M2 for $12^{2} + (-4)^{2}$ OR B1 for $\binom{12}{-4}$ M1 for $(their 12)^{2} + (their - 4)^{2}$
11(a)(ii)	$\begin{pmatrix} -11 \\ 13 \end{pmatrix}$	2	B1 for $\begin{pmatrix} -11 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 13 \end{pmatrix}$ or for $\begin{bmatrix} \overrightarrow{BA} = \end{bmatrix} \begin{pmatrix} -8 \\ 7 \end{pmatrix}$
11(b)	$\frac{1}{2}$ (b – a) oe	2	M1 for correct route or correct unsimplified answer or B1 for $\overline{QS} = \mathbf{b} - \mathbf{a}$ oe
11(c)(i)	$ \begin{pmatrix} 9 & 50 \\ 10 & 69 \end{pmatrix} $	2	B1 for 2 correct elements
11(c)(ii)	$\frac{1}{11} \begin{pmatrix} 8 & -5 \\ -1 & 2 \end{pmatrix} \text{ oe isw}$	2	B1 for $k \begin{pmatrix} 8 & -5 \\ -1 & 2 \end{pmatrix}$ or $\frac{1}{11} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or det = 11 soi
3(a)(i)	Image at $(3, -3)$, $(7, -3)$, $(7, -5)$	2	B1 for reflection in any $x = k$ or if 3 correct points not joined
3(a)(ii)	Image at (-5, 1), (-1, 1), (-5, -1)	2	B1 for translation by $\binom{-2}{k}$ or $\binom{k}{4}$ or if 3 correct points not joined
3(a)(iii)	Image at (6, 3), (6, 4), (4, 3)	3	B2 for correct size and orientation but wrong position or if 3 correct points not joined B1 for enlargement SF ½ with centre (3, 1)
3(b)	Rotation 90° [anticlockwise]oe (-6, -2)	3	B1 for each
3(c)	Reflection $y = -x$ oe	2	B1 for each

8(a)(i)	×	4	B2	for 5 correct for 4 correct for 3 correct
8(a)(ii)	$\binom{5}{3}$	1	Fra	action line and/or missing brackets scores 0
8(a)(iii)	(4 8 1 2)	2	B1	for 2 or 3 correct elements (dep on 2 × 2 matrix)
8(a)(iv)	$\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix} \text{ oe isw}$	2	В1	for $k \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix}$ or determinant = 2 soi
8(b)	Rotation Origin oe 90 [anticlockwise] oe	3	B1	for each
2(a)(i)	Translation		2	B1 for each
	(5 ₈)			Accept 5 right and 8 up
2(a)(ii)	Enlargement [sf] 0.5 oe [centre] (0, -7)		3	B1 for each
2(a)(iii)	Rotation 90 [anticlockwise] oe Origin oe		3	B1 for each
2(b)	Image at (-8, 1) (-8, 5) (-8, 7) (-4, 1)		2	B1 for reflection of flag A in the line $x = -1$ or $y = k$ or for vertices of triangle in correct place but not joined
3(a)	Rotation	3	3 1	B1 for each
	90 ^[o] clockwise oe			
	Origin oe			
3(b)(i)	Image at (-4, -1) (-4, -4) (-2, -4)	1	1	
3(b)(ii)	Image at $(3,-1)(5,-1)(3,-4)$	2	1	B1 for translation by $\binom{7}{k}$ or $\binom{k}{-5}$ or for 3 correct points not joined
3(b)(iii)	Image at (-2, ½) (-2, 2) (-1, 2)	3	I	B2 for 3 correct co-ordinates soi in working or correct size and orientation in wrong position or M1 for $\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} -4 & -4 & -2 \\ 1 & 4 & 4 \end{pmatrix}$ shown or for statement: enlargement, sf 0.5, (0, 0)

11(a)(i)	(-19)	2	(-19) (k)
	$\begin{pmatrix} -19 \\ -2 \end{pmatrix}$		B1 for answer $\begin{pmatrix} -19 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -2 \end{pmatrix}$
			or for $\begin{pmatrix} -9 \\ 6 \end{pmatrix}$ or $\pm \begin{pmatrix} 10 \\ 8 \end{pmatrix}$ seen
11(a)(ii)	3.61 or 3.605 to 3.606	2	M1 for $\sqrt{([-]3)^2 + 2^2}$ oe
11(a)(iii)	-3m + 5n = 14 and $2m + 4n = 9$	В1	Accept equivalents
	$[m=]-\frac{1}{2}$ or -0.5 and $[n=]2\frac{1}{2}$ or 2.5 or $\frac{5}{2}$ with evidence of a correct algebraic method	4	M1 for correctly equating one set of coefficients of <i>their</i> equations or rearranges one of <i>their</i> equations to make m or n the subject e.g. $[m =] \frac{1}{2}(9 - 4n)$ oe M1 for correct method to eliminate one variable for <i>their</i> equations or correctly substitutes <i>their</i> m or <i>their</i> n into the other equation e.g. $-\frac{3(9-4n)}{2} + 5n = 14$ oe B1 for one correct answer
11(b)(i)(a)	$-\mathbf{a} + 2\mathbf{c}$	1	
11(b)(i)(b)	$\frac{3}{8}$ (- a + 2 c) or $-\frac{3}{8}$ a + $\frac{3}{4}$ c oe	1	FT $\frac{3}{8}$ (their (b)(i)(a)) in simplest form
11(b)(i)(c)	$\frac{1}{2}(5\mathbf{a}-2\mathbf{c}) \text{ or } \frac{5}{2}\mathbf{a}-\mathbf{c} \text{ oe}$	1	
11(b)(i)(d)	$\frac{1}{8}(5\mathbf{a} - 2\mathbf{c}) \text{ or } \frac{5}{8}\mathbf{a} - \frac{1}{4}\mathbf{c} \text{ oe}$	2	M1 for a correct unsimplified route
11(b)(ii)	4	1	
	1		

1(a)(i)	Reflection $y = -1$	2	B1 for each	ch
1(a)(ii)	Triangle at $(0, -3), (4, -1), (4, -3)$	2		nslation $\begin{pmatrix} -2\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ -5 \end{pmatrix}$ be correct vertices
1(a)(iii)	Triangle at (-2, 2), (-2, 6), (-4, 6)	2	or 90° ant	nation about (0, 0) 90° clockwise ciclockwise with wrong centre the correct vertices
1(a)(iv)	Triangle at (-3, -1), (-3, -2), (-1, -1)	2	or sc	ale factor $-\frac{1}{2}$ with wrong centre ale factor $\frac{1}{2}$ with centre (0, 0) or three correct vertices
1(b)(i)	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ cao	1		
1(b)(ii)	4.47 or 4.472	2	M1 for (t	$heir 2)^2 + (their 4)^2$
1(b)(iii)	(7, 10)	2	B1 for each	ch
1(b)(iv)	y = 2x - 4 oe	3	M1 for su $y = their n$	radient = $\frac{6-2}{5-3}$ oe or answer $y = mx - 4$ abstituting (3, 2) or (5, 6) into $mx + c$ or into $y - k = their m(x - h)$ eir y = mx - 4
1(b)(v)	(0, -4)	1	FT their ((b)(iv)
2 (a) (i)	Rotation		1	
	90° [anticlockwise] oe		1	
	(9, 5)		1	
(ii)	Translation		1	
	$\begin{pmatrix} -8 \\ -14 \end{pmatrix}$ oe		1	
(iii)	Enlargement		1	
	[sf] $\frac{1}{3}$		1	
	(-8, -2)		1	
(b) (i)	Image at $(1, -3)(2, -3)(2, -5)$		2	M1 for triangle correct size and orientation, wrong position or SC1 for correct reflection in $y = -x$
(ii)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		2	B1 for 1 correct column or row

3(a)(i)	Image at (5, 1), (7, 1), (7, 4)		2	B1 reflection in $y = 4$ or $x = k$
3(a)(ii)	Image at (-1, 1), (-4, 1), (-1	, 3)	2	B1 correct size and correct orientation wrong position or for rotation 90° clockwise around (0, 0)
3(a)(iii)	Image at $(2, -4)$, $(4, -4)$, $(2$, – 1)	2	B1 for translation by $\begin{pmatrix} 1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -5 \end{pmatrix}$
3(b)	Enlargement		1	
	[sf] – 0.5 oe		1	
	(5, 5)		1	
3(c)	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$		2	B1 for one correct column or row
3(d)(i)	(4, 2)		2	M1 for $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ oe
3(d)(ii)	(-4, 2)		3	M2 for $\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -4 \\ 1 \end{pmatrix}$
				or M1 for $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{bmatrix} 4 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} -4 \\ 1 \end{pmatrix}$
3(d)(iii)	$\frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ oe isw		3	M2 for det = 2 soi or $k \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ soi or M1 for recognition that Q is inverse matrix of G or GQ = I or QG = I
2(a)(i)	Image at (8, 1), (10, 5), (8, 5)	2		ation $\binom{6}{k}$ or $\binom{k}{-5}$ points not joined
2(a)(ii)	Image at (4, 10), (4, 8), (8, 8)			on 90° anticlockwise but different centre n 90° clockwise about (4, 10) points not joined
2(a)(iii)				gement factor $\frac{1}{2}$ but incorrect centre points not joined
2(b)	Reflection	1		
	y = -x oe	1	If zero scored	d, M1 for correct use of matrix product

2(c)(i)(a)	(13) 16)	2		for eac SC1 for		a 2 by 1 matrix 3 [,] 16)	
2(c)(i)(b)	$ \begin{pmatrix} 2 & 10 \\ 3 & 15 \end{pmatrix} $	2	B1	B1 for answer any 2 by 2 matrix			
2(c)(i)(c)	$\frac{1}{2} \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$ oe isw	2				$\begin{pmatrix} -3\\2 \end{pmatrix}$ oe soi $(k \neq 0)$ nant = 2 oe soi	
2(c)(ii)	NM or MP or N ² oe or P ² oe	1					
6(a)(i)	Translation				1		
	$\begin{pmatrix} 3 \\ -13 \end{pmatrix}$ oe				1		
6(a)(ii)	Enlargement				1		
	$[sf] - \frac{1}{2}$ oe				1		
	(0, -4)				1		
6(b)	Image at (0,0)(0,6)(-4,6)(-4,2))			2	B1 for rotation of 90° anticlockwise about the wrong centre or 90° clockwise about (3, -1) or 4 points correct but not joined.	
6(c)	Image at (4,0)(10,0)(10,-4)(6,-	-4)			2	B1 for reflection in $y = k$ or in $x = 1$ or 4 points correct but not joined	
6(d)	Enlargement				1		
	[sf] 3				1		
	Origin oe				1		
11(a)(i)	$\begin{pmatrix} 1 & -18 \\ 6 & 13 \end{pmatrix}$			2	M	1 for two or three correct elements	
11(a)(ii)	$\begin{array}{ c c }\hline 1 & 4 & 3 \\ -1 & 2 \end{array} \text{ or better isw}$			2	M	11 for det = 11 or $[k]$ $\begin{pmatrix} 4 & 3 \\ -1 & 2 \end{pmatrix}$ isw	
11(b)	Reflection			1			
	y-axis oe		_	1			
11(c)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$			2	B	1 for one correct column or row	

11(d)(i)	$\frac{1}{7}(4\mathbf{a}+3\mathbf{b}) \text{ or } \frac{4}{7}\mathbf{a}+\frac{3}{7}\mathbf{b}$	3	M2 for correct unsimplified answer seen or $\overrightarrow{AP} = \frac{3}{7}(\mathbf{b} - \mathbf{a})$ oe or $\overrightarrow{BP} = \frac{4}{7}(\mathbf{a} - \mathbf{b})$ oe or M1 for $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ or $\overrightarrow{BA} = \mathbf{a} - \mathbf{b}$ or correct route for \overrightarrow{OP}
11(d)(ii)	$[m =] \frac{7}{3}$ $[k =] \frac{4}{3}$	2	B1 for each value or M1 for $\frac{m}{7} (4\mathbf{a} + 3\mathbf{b}) = \mathbf{b} + k\mathbf{a}$ oe

4(a)(i)	Correct translation	2	B1 for translation $\begin{pmatrix} 6 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -2 \end{pmatrix}$
4(a)(ii)	Correct rotation	2	B1 for rotation 180° but other centre
4(a)(iii)	Correct reflection	2	B1 for reflection in $y = -x$
4(b)(i)	Enlargement [factor] $\frac{1}{2}$ or 0.5 [centre] $(0, 0)$ oe	3	B1 for each
4(b)(ii)	$ \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} $ oe	2	B1 for matrix of form $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ oe, $k \neq 0$ or 1
4(c)	± 2.5	3	B2 for $25u^2 = 156.25$ or $5u = [\pm]12.5$ or M1 for $(4u)^2 + (3u)^2$

5(a)(i)	Image at (0, 1), (0, 2), (-3, 1)	2	B1 for reflection in $y = 0$ or $x = k$
5(a)(ii)	Image at $(0, 0)$, $(0, -2)$, $(6, -2)$	2	B1 for correct size and correct orientation wrong position or for 2 correct vertices plotted
5(a)(iii)	Image at (-5, 4), (-5, 5), (-2, 4)	2	B1 for translation by $\binom{-5}{k}$ or $\binom{k}{3}$
5(b)	Rotation 90° clockwise oe (4, -1)	3	B1 for each
5(c)(i)	(4, 1)	2	M1 for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{pmatrix}$
5(c)(ii)	(8, -1)	2	M1 for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{pmatrix}$
			or $\begin{pmatrix} 0 & -2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{pmatrix}$ or $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -8 \end{pmatrix}$
5(c)(iii)	Rotation 90° anti-clockwise oe Origin oe	3	B1 for each
6 (a) (i)	Rotation	1	
	90° [anticlockwise] oe	1	
	(4,4)	1	
(ii)	Enlargement	1	
	[centre] (5,1)	1	
	[scale factor] 2	1	
(b) (i)	Image at (-2, 5) (-2, 7) (-1, 7)	2	B1 for translation by $\binom{-5}{k}$ or $\binom{k}{3}$
(ii)	Image at $(-2, 1) (-2, -1) (-1, -1)$	2FT	FT their triangle P reflected in line $y = 3$ B1 for reflection of triangle P in the line $x = 3$ or $y = k$
(c)	Image at (-2, 3) (-4, 3) (-4, 4)	3	B2 for 2 vertices correct in triangle or 3 correct co-ordinates soi in working or B1 for 1 vertex in triangle correct soi
			or M1 for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 3 & 4 \\ 2 & 4 & 4 \end{pmatrix}$ shown
			or statement

or statement rotation 90° [anticlockwise] about (0,0)

	1	i			<u> </u>
9 (a	i) (i)	у	1		
	(ii)	x + y	1		
	(iii)	x + 2y	2		a correct unsimplified route or ying \overrightarrow{OS}
(b))	$-(\frac{1}{2}x + y)$ oe	2		a correct unsimplified route $= -\frac{1}{2} \mathbf{x} \text{ or } \overrightarrow{RG} = \frac{1}{2} \mathbf{x}$
(c	e) (i)	$\overrightarrow{MG} = 2\mathbf{x} + 2\mathbf{y}$	2	M1 for	a correct unsimplified route e.g. $2\overrightarrow{PQ}$
	(ii)	$\overrightarrow{MH} = \mathbf{x} + \mathbf{y} \text{ or } \overrightarrow{HG} = \mathbf{x} + \mathbf{y}$	M1	Accept	$\overrightarrow{HM} = -\mathbf{x} - \mathbf{y} \text{ or } \overrightarrow{GH} = -\mathbf{x} - \mathbf{y}$
		$\overrightarrow{MG} = 2\overrightarrow{MH}$ oe	A1	Dep on	(c)(i) correct, arrows essential
2 (a) (i)	Triangle drawn, vertices $(2, -4)$, $(2, -5)$, $(4, -4)$	2		SC1 for translation $\binom{5}{k}$ or $\binom{k}{-2}$ or correct points not joined
	(ii)	Triangle drawn, vertices (-3, 4), (-3, 5), (-1, 4)	2		SC1 for reflection in line $y = k$ or line $x = 1$ or correct points not joined
	(iii)	Enlargement	1		
		[factor] 3	1		
		[centre] $(-6, -5)$	1		
(b) (i)	$\begin{pmatrix} 2 & 5 \\ 3 & 10 \end{pmatrix}$	1		
	(ii)	(10 14)	2		SC1 for one row or one column correct
	(11)	$\begin{pmatrix} 10 & 14 \\ 18 & 24 \end{pmatrix}$ final answer	2		SCI for one row of one column correct
	(iii)	$\frac{1}{4}$ oe	3	I .	M2 for $1 \times 4 - 2 \times 3 = 4 \times k - 3 \times 1$ or better or B1 for $1 \times 4 - 2 \times 3$ or $4 \times k - 3 \times 1$ seen
(c) (i)	Rotation	1		
		90° [anti-clockwise] oe	1		
		(0, 0) oe	1		
	(ii)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	2		SC1 for one correct row or column
			1		

			
7 (a) (i)	$\frac{1}{2}$ p	1	
(ii)	$\frac{1}{2}\mathbf{p} - \frac{1}{3}\mathbf{r}$	1	
(iii)	$\mathbf{p} + \frac{2}{3}\mathbf{r}$	1	
(b)	$\mathbf{r} + \frac{3}{2}\mathbf{p}$	2	M1 for correct unsimplified answer or for correct route
			or for recognising \overline{OU} as position vector
(c)	6 nfww	3	B2 for $(2k)^2 + ([-]k)^2 = 180$ oe
			or M1 for $(2k)^2 + ([-]k)^2$ oe
3 (a) (i)	Image at (3, 1), (5, 1), (5, 4), (4, 4), (4, 2), (3, 2)	2	SC1 reflection in $y = 1$ or $x = k$ or 6 correct points not joined
(ii)	Image at $(2, 1)$, $(6, 1)$, $(6, -5)$, $(4, -5)$, $(4, -1)$, $(2, -1)$	2	SC1 for other enlargement of scale factor -2, correct size and correct orientation or 6 correct points but not joined
(iii)	Image at $(-1, -1)$, $(-2, -1)$, $(-2, -2)$, $(-4, -2)$, $(-4, -3)$, $(-1, -3)$	3	M2 for 6 correct points shown in working or plotted correctly but not joined or M1 for $ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1 & -2 & -2 & -3 & -3 \\ 1 & 2 & 2 & 4 & 4 & 1 \end{pmatrix} $ or for rotation 90° [anticlockwise] centre $(0,0)$ stated
(b)	Enlargement [sf] 3 origin oe	3	B1 for each
6 (a) (i)	Correct image $(2, -5) (4, -5) (4, -1)$	2	SC1 for reflection in $y = 0$ or 3 correct points not joined
(ii)	Correct image (-2, 1) (-6, 1) (-6, -1)	2	SC1 for rotation 90 clockwise any centre or 3 correct points not joined
(iii)	Translation by $\begin{pmatrix} 1 \\ 9 \end{pmatrix}$	2	B1 for each
(iv)	Enlargement [SF] – ½ oe [Centre] (2, 1)	1 1 1	
(b) (i)	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	2	B1 for one correct row or column but not the identity matrix
(ii)	Reflection $x = 0$ oe	1 1	

8 (a) (i)	Not possible	1	
(ii)	$ \begin{pmatrix} 4 & 0 \\ -2 & 10 \\ 6 & -8 \end{pmatrix} $ final answer	1	
(iii)	$\begin{pmatrix} 14 & 35 \\ -8 & -20 \end{pmatrix} $ final answer	2	M1 for one correct column or row
(iv)	(–6) final answer	2	M1 for 14 – 20
(v)	$\begin{pmatrix} -2 & 18 \\ -6 & 22 \end{pmatrix} $ final answer	2	M1 for one correct column or row

5 (a) (Image at $(-2, -4)$, $(4, -4)$, $(4, 0)$	2	SC1 for translation $\begin{pmatrix} -4 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -8 \end{pmatrix}$
(i	8.94 or 8.944	2	M1 for $\sqrt{(-4)^2 + (-8)^2}$ or $\sqrt{4^2 + 8^2}$
(b) (Enlargement [factor] 0.5 oe [centre] (0, 0) oe	1 1 1	
(i	$\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix} \text{ oe}$	2FT	FT their scale factor from (b)(i) dep on enlargement and centre (0, 0)
(ii	0.25 or $\frac{1}{4}$	1FT	B1FT for one row or column Strict FT their matrix but not for identity matrix

4 (a)	Triangle drawn at (-4, 3), (-1, 3), (-1, 4)	2	SC1 for correct reflection in $x = k$ or $y = 1$
(b)	Triangle drawn at (1, 7), (1, 6), (4, 6)	2	SC1 for translation by $\begin{pmatrix} -2 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 3 \end{pmatrix}$
(c)	Triangle drawn at (2, 3), (2, 1), (8, 1)	2	M1 for two correct vertices or SC1 for correct enlargement about the wrong centre
(d)	Rotation 90° clockwise oe (7, 4)	1 1 1	Accept –90°

9 (a) (i)	$\begin{pmatrix} 12 \\ -5 \end{pmatrix}$	2	M1 for $\begin{pmatrix} 12 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -5 \end{pmatrix}$
(ii)	13 nfww	2FT	M1FT for $\sqrt{their 12^2 + their (-5)^2}$
			FT dep on <i>their</i> (a) being $\begin{pmatrix} a \\ b \end{pmatrix}$ where a, b are both non-zero
(b)(i)(a)	b – a	1	
(i)(b)	$\frac{3}{5}$ (b - a) or $\frac{3}{5}$ b - $\frac{3}{5}$ a final answer	1FT	FT $\frac{3}{5}$ their vector, in terms of a and b , in (b)(i)(a)
(i)(c)	$\frac{1}{5}(2\mathbf{a} + 3\mathbf{b}) \text{or } \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$ final answer	2	M1 for a + their vector in (b)(i)(b) or any correct route
(ii)	$\frac{3}{2}$ oe	1	